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Abstract. Gravitational wave signals from a large number of astrophysical sources will be

present in the LISA data. Information about as many sources as possible must be estimated from
time series of strain measurements. Several types of signals are expected to be present: simple

periodic signals from relatively stable binary systems, chirped signals from coalescing binary

systems, complex waveforms from highly relativistic binary systems, stochastic backgrounds

from galactic and extragalactic binary systems and possibly stochastic backgrounds from the

early Universe. The orbital motion of the LISA antenna will modulate the phase and amplitude
of all these signals, except the isotropic backgrounds and thereby give information on the
directions of sources.

Here we describe a candidate process for disentangling the gravitational wave signals and
estimating the relevant astrophysical parameters from one year of LISA data. Nearly all of the

sources will be identified by searching with templates based on source parameters and directions.

PACS numbers: 0480N, 0705K, 9530S, 9555Y, 9575P, 9585S

1. Introduction

The sensitivity and operating band (0.1 mHz to 1 Hz) of LISA are such that many types,
and a very large number, of astrophysical sources should be detectable. The signals will

vary greatly in character and strength. These many astrophysical signals make the scientific
goals of the mission particularly attractive. However, their combination in the data stream
presents a challenge for the data analyst. The goal of the analysis is to produce catalogues
of gravitational wave sources with accurate estimates of their astrophysical parameters.

In this paper, we first discuss the signal types and their characteristics. Then, we present
one possible scenario for the data flow and routine handling, strong-signal processing, weak-
signal processing and background analysis. First, the strongest signals are identified in the
spectrum, fitted in the time series and removed from the time series. Next, weaker periodic
and chirped signals and poorly characterized signals (e.g. generic bursts) are searched for
and removed. Then, weak signals with complex waveforms are sought with templates.
For these signals, methods such as genetic algorithms, simulated annealing or hierarchical
searches can be used to efficiently search the large parameter space. Finally, the spectrum

of the remaining power can be analysed for continuous backgrounds. Those from galactic
and extragalactic binaries can be modelled. Any isotropic residual signal not having

the frequency dependence expected for extragalactic binaries would be a candidate for
a background signal from the early Universe.
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The purpose of this paper is to provide an example of a general approach that could

be used in analysing the LISA data for astrophysical information. We will not discuss the

additional analyses that will be needed to assess the fundamental physics tests which LISA is

capable of. Some of the techniques that will be discussed here have been studied and applied

to real and/or simulated data from ground-based gravitational wave interferometers [1, 2].

2. The nature of the signals

The signals from expected sources can be roughly categorized into four main types: first,

most detectable binary systems will generate simple periodic signals; secondly, pairs of

intermediate mass black holes near coalescence will give chirped signals; thirdly, compact

objects, such as small (3-20 M o) black holes, spiralling in highly relativistic orbits around

massive (105-107 Mo) black holes in galactic nuclei, will generate very complex waveforms.

Finally, there will be a stochastic background from close white dwarf binaries, both galactic

and extragalactic, and there may possibly be a stochastic background from processes in the

early Universe. These signals will exhibit a wide range of amplitudes. Coalescing massive

black hole signals could, if present, exceed the weakest extractable signals by three orders

of magnitude.

We will discuss these types of sources below to illustrate the range of signal
characteristics and strengths expected in the LISA data. Note that we categorize the

signals by their inherent spectral properties, but the orbital motion of the LISA antenna

will modulate the phase of signals from all sources, and, in conjunction with the antenna

sensitivity pattern and the source polarization, will modulate the amplitude [3, 4].

Additionally, as Thorne has emphasized [5], there may very well be exotic sources of

gravitational waves, such as naked singularities and boson and soliton stars, which may be

among the most interesting grav_,tational wave sources. Because the signals from these are
generally not well understood, we do not consider them further here.

Simple periodic signals

The simplest and most common signals expected in the LISA data stream will have constant

frequency (except for detector motion). Binary systems of compact objects are expected
to produce the bulk of the gravitational wave signals identifiable by LISA. Candidate

systems will include neutron star binaries, close white dwarf binaries, interacting white

dwarf binaries, cataclysmic variables and small black hole binaries (< 20 Mo). Very many

of these systems in the Milky Way will be detectable. The strongest sources will be nearby

in the galactic plane, but most will be toward the galactic centre. Verbunt has described

these in his paper [6]. The number of galactic close white dwarf binaries should be so

large that they form a continuum [7] below about 1 mHz in a one year long data string,

that is, there will be a confusion level where there are multiple sources per frequency bin

of comparable _.mplitude, preventing the estimation of source parameters. The stronger
galactic sources may rise as much as two orders of magnitude above this confusion level.

Extragalactic sources of this type will be far more numerous and they will set the binary
confusion noise level above roughly 3 mHz.

Chirped signals

Chirped signals, those whose frequency increases with time, are produced by the decaying
orbits of coalescing objects. Extensive calculations of the expected signals over most of the
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time before coalescence are available. Matzner has discussed the computation of the signal

strength during coalescence, when it becomes much more complicated.

If they exist, coalescing binaries of intermediate mass black holes (--, 102-104 MQ)

would produce observable signals around 1 mHz and above. In some cases, these signals
could exceed the instrument noise and confusion noise levels by as much as several hundred

times, even out to a redshift of z = 1.

A second possible source of chirped signals is massive ('-_ 104-107 Mo) black hole

binaries in the last year before coalescence. These might be the product of galactic mergers,

as discussed by Rees [8] and Vecchio [9]. If these signals occur frequently enough to be

seen, they would have signal-to-noise ratios of up to several thousand for sources at z = 1.

Complex waveforms

Compact objects, such as small (3-20 M o) black holes, can become trapped in highly
relativistic orbits about massive black holes in galactic nuclei [10-12]. These orbits decay

over decades or longer through the emission of gravitational radiation. The complex

waveforms will have multiple periodicities. These sources may well be detectable at

cosmological distances, but will have only moderate signal-to-noise ratios. They are

particularly interesting because the signals should provide statistical information about

physical conditions surrounding the massive black holes and about the mass function of
small black holes.

Stochastic backgrounds

As mentioned above, the very large number of galactic and extragalactic binaries will, at

some level, give an apparently stochastic background. In the region below about 1 mHz

where galactic binaries dominate, the background arises because there are typically several

sources contributing at similar levels to a single frequency bin. Since most of these sources

are confined to the galactic plane, this background will be spatially anisotropic. Between

roughly 1 and 3 mHz, the galactic sources rapidly become sparse with increasing frequency,

revealing an extragalactic background at a lower level. Above about 3 mHz where mainly

extragalactic sources occur, there are extremely many contributors to a frequency bin and

the background is nearly isotropic.

The gravitational wave background from the Big Bang is very uncertain and the
scenarios under which LISA could detect it are not well understood. However, detection

would be a very important scientific benefit from LISA. If the cosmological gravitational

wave background were large enough at mHz frequencies to be detected by LISA, then one
would like to combine the results with those at other frequencies, such as from ground-based

detectors, to determine the spectral shape. This might suggest which non-thermal process

generated the background. In contrast with the galactic binary confusion level, one would
expect the cosmological background to be quite isotropic.

3. Data flow and routine handling

To show how LISA data handling might proceed, we give a plausible scenario for the

conventional processing of LISA data. Some processing of the LISA data must be done on

the spacecraft in order to compress the data to fit within the telemetry bandwidth available
for scientific data [13]. The beat signals from the interferometers will be recorded as a

time series of phase measurements. Most of the orbital contributions to the signal will be
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removed using onboard information. The phase measurements will be corrected for laser

and clock noise prior to compression for telemetry.

The ground processing of LISA data begins when the telemetry is received by the ESOC

Mission Control Centre (figure 1). There the data will be catalogued and the payload and

spacecraft housekeeping data will be separated from the scientific data. The payload and

scientific data and relevant spacecraft parameters will be decompressed and forwarded to
the LISA Science Centre for the scientific processing.

LISA Data Flow
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Figure 1. Routine data flow and handling. This flowchartillustrates how LISA data might flow
from the receiving downlink site to the Science Centre and investigators.

At the Science Centre, the payload housekeeping parameters will be examined to track

the health of the scientific payload. Quality assurance checks from housekeeping and

external data will be used to determine limitations on the data. Preliminary quality assurance

tests will also be performed on the scientific data to ensure that valid data are being received.

Any necessary payload commands are sent back to the Operations Centre for uplinking to the

spacecraft. The phase measurement time series will be converted to path length difference

time series of several durations, say, week-, month- and year-long. Gaps will be filled where

possible. Residual orbital effects will be removed from the data using ancillary information
from the spacecraft and ground tracking. Phase jumps could possibly be recovered from

the signals of the strongest sources. Strain time series of several durations and their Fourier

transforms are calculated and stored as intermediate science products.

4. Strong-signal processing

There will be only a few gravitational wave sources which are known beforehand from

electromagnetic observations. Comparisons of the actual signals with the predicted
waveforms of known sources constitute a stringent test for the LISA instrument and the
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general theory of relativity. However, almost all of the gravitational wave sources will not
have been observed previously. The general nature of their signals can often be anticipated,

but the parameters of individual signals will have to be determined by searching over the

space of possible parameters with templates.

For the purposes of this discussion, a strong signal is one whose parameters can be
determined well enough by simple procedures to permit a preliminary subtraction of it from

the data. For stronger signals, a good initial guess at the source parameters can be made by

inspection of the power spectra. The direction parameters would be estimated at the same

time as the source parameters.

The first step in separating the many periodic signals from astrophysical seurces in the

LISA data will be identifying and removing the strong sources. The identification might

proceed in one of two ways: the time series could be demodulated for each source direction
resolution element and the spectra from the resulting time series examined for strong sources,

or the astrophysical and source direction parameters for each strong source could be fitted

in the original time string using the undemodulated spectrum to limit the parameter space
of the templates. Although this choice deserves more study, we have tentatively chosen the

latter approach for the present discussion, partly because the size of the effective direction

resolution element depends on the strength of the source. In any event, the identification

of strong periodic signals will produce estimates of the source direction, as well as the

signal amplitude, frequency, eccentricity, polarization and phase. These signals will then

be removed from the original time series.

The next step in the data processing is the identification and removal of the strong

non-periodic signals, e.g. the chirped signals. For strong enough non-periodic sources, the

parameter space can be significantly reduced by examining the original spectra and spectra
based on subsets of the whole time series. There will also have to be a search for strong,

unexpected types of sources with discovery filters.

The strong-signal processing phase will produce a catalogue of strong sources with
estimates of their directions and the parameters of the emitting systems and an intermediate

time series with the strong sources removed will be produced which will be the starting

point for weak-signal processing.

5. Weak-signal processing

The search for weak signals will begin with an initial fitting of individual templates for

periodic and chirped signals to the time series with the strong signals removed. This will
involve a large number of pre-computed templates and will tentatively identify the weak

sources. Then the fitted signals for the strong and the weak sources are combined and refit

to the original time series. The results will then be catalogued and removed from the data

set.

The second step will be to search for the complex signals, described above. The phase

of these multi-periodic and quasi-periodic signals has information about the gravitational

wave frequency, its time derivative, the radial orbital period, the azimuthal orbital period,

the rate of precession of the node and the angular momentum of the massive black hole,
in additional to the usual direction information. A brute force search would require a very

large grid of templates and a more sophisticated search strategy is desirable.

Among the candidates for the search strategy are several based on a combination of

'steepest-descent' methods and random restarts in order to avoid local maxima in the

parameter space. Two such approaches are the use of genetic algorithms [14] and simulated

annealing [15]. Research on such approaches will certainly be needed.
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Another approach which is being investigated for ground-based gravitational wave
searches is the hierarchical method. Since many of the parameters involve time, the number

of templates increases very rapidly with the length of the data set. So, a hierarchical search

would first fit templates computed over a coarser parameter grid to a shorter time series and

then templates computed on a finer grid in the promising regions of parameter space would

be applied to longer duration time series.

6. Background analysis

The binary confusion level is uncertain at this time because the space density of some

types of contributors is poorly known [6, 7, 16]. Nonetheless, one can anticipate some

of the properties of this continuum, and hence the approach to estimate it from the data.

To begin with, the distribution of directions and signal strengths from resolved galactic

binaries will be used to develop a statistical model for the distribution of different types of

binaries throughout the galaxy. That model will then be extrapolated to somewhat lower
and higher frequencies, with the help of whatever information is available on the initial

period distribution and evolution of different types of close binaries. The predictions of

the model for the galactic confusion level can be compared with the observations, after

identified sources are removed, to possibly improve the model.

Next, an attempt would be made to fit the confusion noise due to extragalactic binaries,

using knowledge of the frequency dependence of the spectral amplitude. If essentially all

of the isotropic components can be fitted in this way, there will be no way to separate

out a possible contribution from events in the early Universe, such as the Big Bang, phase
transitions or vibrating cosmic strings. However, if the observed isotropic spectral amplitude

does not fit that expected for extragalactic binaries, the difference would be a candidate for

gravitational waves coming from the early Universe.

7. Summary

LISA is expected to search for a wide range of signal types with different characteristics.

The data should be very rich in astrophysical information. We have outlined one possible

approach to processing the data. The astrophysical parameters of strong and weak periodic

and chirped signals will be estimated through the use of templates and removed from the

data by least-squares fitting. Weak complex signals will then be searched for with templates.

The parameter space, however, is very large. Thus the use of highly efficient search
approaches, such as genetic algorithms, simulated annealing or hierarchical searches, must be

investigated. The isotropic extragalactic background due to binaries and to possible events

in the early Universe could be distinguished only by having different spectral signatures in

the mHz frequency range. The source catalogues to be produced by LISA data will yield

information about the space density throughout the galaxy of various types of compact

binaries and hopefully also information about the distribution, evolutionary history and
neighbourhoods of massive black holes.
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